ChatGpt的出现,相当于知识型工作者的工业革命
微软CEO纳徳拉:我这辈子,至少在从事技术工作的30年里,chatGPT是我从未见过的技术扩散。也许这一次,对知识型工作者来说,这就完全等同是工业革命。微软每个产品都将接入chatGPT。
ChatGPT(Chat Generative Pre-trained Transformer)是OpenAI在2022年11月推出的一个聊天机器人。它建立在OpenAI的GPT-3系列大型语言模型之上,并通过监督和强化学习技术进行微调。
AIGC,高自动化的的内容生产方式
AIGC(全称为AI-Generated Content),即利用人工智能技术来自动生产内容。具体可基于生成对抗网络GAN、生成扩散模型和大型预训练模型等人工智能技术,通过已有数据寻找规律,并通过适当的泛化能力生成相关内容的技术。
AIGC已经成为继PGC(Professional Generated Content,专业生产内容)和UGC(User Generated Content,用户生产内容)之后新型的内容创作方式。从内容产量的角度,PGC时,受内容产量所限,属于单一用户体验的模式。UGC时代,受内容质量所限,只有小范围用户体验。而到了AI辅助生成阶段,用户范围进一步扩大,再进一步到AIGC时代,不仅用户范围无限扩大,甚至离元宇宙用户体验,也越来越近。
1.AIGC在各个领域的变革性影响、模型和应用
AIGC在消费互联网、产业互联网和社会价值领域持续产生变革性影响
AIGC领域目前呈现AIGC的内容类型不断丰富、内容质量不断提升、技术的通用性和工业化水平越来越强等趋势,这使得AIGC在消费互联网领域日趋主流化,涌现了写作助手、AI绘画、对话机器人、数字人等爆款级应用,支撑着传媒、电商、娱乐、影视等领域的内容需求。目前AIGC也正在向产业互联网、社会价值领域扩张应用。
图1:AIGC应用现状概览(引用自红杉资本)
产业生态方面:
AIGC领域正在加速形成三层产业生态并持续创新发展,正走向模型即服务(MaaS)的未来。
目前,AIGC产业生态体系的雏形已现,呈现为上中下三层架构。
图2:AIGC发展趋势报告2023(引自腾讯)
AIGC的模型方面:
文本领域。文本是发展最完备的领域。然而,想要语言表达自然流畅是个十分高的标准。如今,这些模型在通用的中、短篇写作方面表现还算不错(但即便如此,它们通常也只是被用来生成初稿或对初稿做迭代完善)。随着时间的推移,模型越来越好,我们有望可以看到更高质量及更长篇的内容,并且针对各垂直领域有特定的优化。
代码生成。正如GitHub CoPilot所显示出的效果,很快,代码生成就会变得十分普遍,它能极大提高程序开发者的生产力。而对于非专业人员,借由这些工具,编写代码也将不是难事。
图像领域。图像领域的应用爆发是新近之事,但也可谓势不可挡:毕竟,在社交媒体上分享生成的图像比文字要有趣得多。而且我们也看到,市面上出现了非常多不同审美风格的图像模型,以及编辑和修改生成图像的不同技术。
语音合成。语音合成的应用已经有段时间了,但消费与企业级的应用才刚刚起步。对于像电影和播客这样的高端应用来说,要想一次性生成与配音演员或主播录音一样不机械、有自然质感的作品,还有很长的路要走。但就像图像领域一样,现在的模型也将成为将来更优秀模型的发展基础。
视频和3D模型领域。这一领域的进步则要缓慢不少,人们期待AI模型在这些创意领域(如电影、游戏、VR、建筑和实体产品设计)的进一步应用潜力。预计在未来1-2年内,我们将能看到一些基础的3D和视频生成模型。
其它领域。其它许多领域还处于基础模型的研发阶段,如音频、音乐到生物与化学领域。
下图是这些基本模型的进展与相关应用的发展进程时间表,2025年之后为为预估时间。
图3:模型进展与发展进程时间表(引自红杉资本)
2.生成式人工智能,应用解剖
机器已经开始可以创造有意义并具备美感的东西了。这一新型的AI被称为“生成式人工智能”(Generative AI),也就是说,机器并非如之前那样仅分析已有的数据,而是生成了全新的东西。
生成式AI应用解剖:生成式AI应用会是什么样子呢?有一些预测可供参考。
智能化与模型微调生成式AI应用的底层技术其实都是GPT-3或Stable Diffusion等大型AI模型。而随着应用程序不断获得更多用户数据,这些数据便可用来对模型做更精细的改进,以实现针对特定问题空间改进模型质量和表现、缩小模型尺寸或降低成本。
我们可以把生成式AI应用程序看作UI层(用户交互界面层)或“小脑”,支撑它运行的底层大型通用AI模型才是“大脑”。
实现形式方面如今,生成式AI应用在很大程度上是以插件的形式存在于现有软件生态系统中,通过IDE(集成开发环境)运行代码,而通过Figma或Photoshop之类的应用程序来生成图像;我们甚至可以设想,将来Discord机器人也将能通过生成式AI的技术实现更广泛的用途。
此外还有数量较少的独立的生成式AI网络应用,比如用于文案写作的Jasper和Copy.ai,用于视频编辑的Runway,以及用于记笔记的Mem。
插件可能会是个非常有效的切入口,一方面不需要引入新的应用程序,另一方面也以非常聪明的方式避开了“先要有鸡还是先要有蛋”的问题(改善模型需要大量的用户使用数据,但另一方面,要有好的模型才能吸引到足够多的用户使用)。
交互模式范例如今,我们看到的大多数生成式AI的演示都是“一次性作品”:提供一个输入量,机器会生成一个输出,然后你再决定是否保存结果或者弃掉重来。随着越来越多的模型不断迭代而变得更强,将来我们能实现对输出作品的修改、完善、升级或生成不同版本等操作。
现在的生成式AI通常被用来生成产品原型或初稿。生成式AI通常都很擅长生成多个不同版本的作品,人们可以在此基础上进一步创作(如生成多个不同的图标或建筑设计模型);此外,它们也很擅长为初稿提修改建议,从而帮助用户更好地完善作品(如博客文章或代码自动补全)。随着模型变得越来越智能(当然离不开大量的用户使用数据),我们有理由期待它们将来能生成越来越好的初稿,甚至可以直接生成可作为终稿使用的作品来。
持续的细分类目引领者通过不懈加速“更多用户参与/更多数据—更好的模型”这一发展飞轮,生成式AI公司可以获得持续的竞争优势并最终成长为行业最佳。当然要注意维护这一良性循环:①获得极高的用户参与度→②获得更多用户数据以训练出更好的模型(提示改进、模型微调、将用户行为作为标记的训练数据等)→③优秀的模型吸引更多的用户并提升参与度。此外,这些AI公司还可以往特定的问题空间发展(如代码领域、设计领域或游戏领域等),而不是非要做得大而全。还可以如前所述,通过插件的形式整合进当下目标用户的生产流程中,以此实现用户增长和产品分发,之后再尝试打造AI原生的工作流程来替代现有的应用程序。找到正确的方式来打造这些应用,积累用户与数据,这些都需要时间,但我们相信,好的产品必然持久,也终将发展壮大。
3.对技术的发展,保持高敏感度
高科技本身没那么重要,高科技带来的权利架构的演变,才是发财的重点(引自硅谷王兴)。
当ChatGpt等技术出现时,大家觉有有趣,会兴奋地玩起来。过段时间,发现一线局限性,就很快抛之脑后,统统归类到“有用但是还差那么点意思”。
而有的人,在自己的应用场景里,把ChatGpt等技术用起来,各站组合和小创新,明显得提高自己的工作效率。从尝到一点甜头,到坚持组合和创新,最后就会可能出现一些“完全意向不到的应用”。
而这些意向不到的应用,往往无法提前预测,也需要我们具有极高的敏感度。尤其新技术可能衍生出新的权利架构,甚至某个机构或某类资产,在这种权利架构中获得垄断性的收益。对于提前布局的人,将会获得超额收益,挣得钵满瓢满。
本网站文章皆为作者授权。发布者:虹七,转载请注明出处:https://ruofanseo.com/revolutionary-production-methods/